(866) 349-9907

Arlington, TX United States

©2020 Proudly created by 3KingsMediaProductions for

AIC Publications. 

XinaBox Connects Students in Africa to Space, STEM and to the Classroom

January 22, 2019

 This is a briefing of the article, you can read the full article or listen to the full podcast here: click here 

 

Bjarke Gotfredsen co founder of XinaBox was started four years ago, because there was a need for trying to get high school students, especially in South Africa, to be interested in STEM — science, technology, engineering and math. We had a problem in South Africa. We had a lot of bursary or scholarships that both universities and private institutions were giving out, but there were not enough takers. The students coming out of the high schools were not qualified enough to take up engineering studies.

 

We were hired to try to figure out if we could create some excitement in the high schools for STEM. My co-founder [Judi Sandrock] and I decided, “We have to find something that’s really interesting.” And we decided space is the stuff. We decided that we have to come up with a way that high school students could build satellites, and we had to figure out a way they could do that without it requiring a lab, or a lot of investment for the different schools, since many schools in South Africa don’t have that kind of funding.

 

We bought the first privately owned satellite in Africa. And we came here to the U.S. to learn a little bit more about satellites and electronics in general. We ran into professor Bob Twiggs at Morehead State University in Kentucky. They had a program trying to get especially women to get into engineering and space science at Morehead University.

 

We adopted that program, took it back to South Africa, and it [involved] a little bit of electronics that had to be assembled. It required some kind of lab equipment, and we decided after a year of running that program, that no, we have to have something that requires nothing — just two hands.

 

So we came up with this XinaBox solution, which is very simple. It’s Lego-style. You have small squares of electronic components, and you click them together with a little connector. The only thing you need is your hands. And you build an electronic circuit that way.

 

We had great success [developing kits with these different components for schools] in South Africa, so we took it back to the U.S. and showed it to the guys at Morehead University. They thought that it was actually a cool project. And they were looking for something where high school students could build satellites.

 

In late 2016, they got a contract with Virginia Space, who launched the Antares rocket to the International Space Station. And that got us some space on the outside of the rocket to launch satellites from. We started a program together, and Virginia Space is funding [our collaborative program]. Bob Twiggs, who runs the Twiggs Space Lab, got a contract to put all this together, and we built the components that the students were going to put into the satellites — the payload, as it’s called. The satellite [students are building] is not big. It’s four-by-four inches and half-an-inch thick. So, it’s a very small satellite.

 

Students are sitting in a classroom without any lab and building these satellites. They have sent them to the guys who are integrating, putting it together. [These satellites are] going to fly in space. And they’re going to get the data. It’s using a technology where it sends the data to another satellite and students get it over the internet. So, they’re going to see the data from their satellite, via the internet.

 

Read the the full article here: click here

Please reload

Recent Posts

Please reload

Archive

Please reload

Tags

Please reload